Blog

Flatpaks: Having your cake and eating it too!

The PC-Mobile Security Divide

Into the Nixverse

Hi there, I'm Gentman Tan!

Hi there, welcome to grok.zone!

Flatpaks: Having your cake
and eating it too!

I run a tight ship. The only rats on board are the ones | keep as pets!

In today's digital landscape, the PC has become the tool of choice for modern productivity.
However, with the increasing reliance on these systems comes a growing concern for security. As
workstations often handle sensitive information and access critical networks, they have at times

become a prime target for cyber threats and malicious attacks. In a previous blog post, | explain

the shortcomings PC operating systems have in terms of application security. So the question must
be asked, what tools are available to address these shortcomings? Can concepts that have proven

to work for computer network security such as zero trust architecture be applied to a desktop

environment?

Flatpaks!

Flatpaks provide standardized environments for applications to be packaged in and run on different

systems. This is necessary since while Linux systems share the same kernel API, Linux systems are
configured in a vast variety of ways, utilizing different display managers and software libraries.

Once you install flatpak on your system, you can issue a flatpak install command to then install an

application of your choice.

In addition to this, Flatpak uses the bubblewrap program which allows applications to be
sandboxed from the host system, while explicitly allowing access parts of the system. Specifying
the certain kinds of interfaces an application is allowed to interact with is one of the key principles
behind security of mobile applications, and is what Flatpaks provide.

https://grok.zone/books/blog/page/the-pc-mobile-security-divide
https://en.wikipedia.org/wiki/Zero_trust_architecture
https://grok.zone/uploads/images/gallery/2025-01/y9YSa1vG8eo0XK3z-image.png
https://flatpak.org/
https://flatpak.org/setup/
https://flathub.org/

(2] '
LibreWolf is potentially unsafe

Download folder read/write access
Can read and write all data in your downloads folder

[«

g Screen contents access
Can access the contents of the screen or other windows

~—= Network access
Has network access

(, Microphone access

% Can listen using microphanes without asking permission
No user device access

Eﬂ The app cannot access any user devices such as webcams or gaming
controllers
Auditable code

@ The source code Is public and can be independently audited, which makes
the app more likely to be safe
Software developer is verified

@ The software developer has verified their identity, which makes the app
more likely to be safe

b 4

Flathub, the default public repository for flatpaks, gives a
brief overview of permissions granted to a flatpak.

In theory, this sandboxing feature allows an application to be executed safely and without fearing
unauthorized access. In practice, many applications are configured with overly lax permissions, and
as a result become ineffective at isolating an application. Flatpak itself has some issues with
permissions not being granular enough, such as when an application requires access to a single

USB device in /dev , as opposed to the entirety of /dev which is being fixed as of the time of writing

. In a related fashion, Android had permissions issues where it required location access in order to
access Bluetooth devices until Android 12 (API level 31).

Fine, I'll do it myself

Luckily, Flatpak overrides allows a user to grant or prevent access to resources to applications. This

means that in order to solve the issue of overly permissive application access, we can simply
override the permissions that were granted to the application with those of our own. To do so, we
can use the flatpak override command, which adds text file entries to the overrides directory
(located in /var/lib/flatpak/overrides/global for system-wide flatpaks, or ~/.local/share/flatpak/overrides for
user flatpaks).

Flatpak overrides in-depth

https://grok.zone/uploads/images/gallery/2025-01/LnZwabcnqe78yDID-image.png
https://flathub.org/
https://github.com/flatpak/flatpak/pull/5855
https://grok.zone/uploads/images/gallery/2025-01/VFxlcfdH7kDNLzcK-image.png
https://docs.flatpak.org/en/latest/flatpak-command-reference.html#flatpak-override

tangy@clipper:~/ > Is /var/lib/flatpak/overrides
chat.simplex.simplex org.audacityteam.Audacity

com.github.iwalton3.jellyfin-media-player org.freecad.FreeCAD

com.github.johnfactotum.Foliate org.getmonero.Monero
com.github.xournalpp.xournalpp org.gimp.GIMP
com.google.AndroidStudio org.gnome.Boxes
com.prusa3d.PrusaSlicer org.keepassxc.KeepassXC
com.valvesoftware.Steam org.keepassxc.KeePassXC
dev.vencord.Vencord org.mozilla.firefox
dev.vencord.Vesktop org.mozilla.Thunderbird
global org.torproject.torbrowser-launcher
io.freetubeapp.FreeTube us.zoom.Zoom

io.gitlab.librewolf-community

Just like a firewall's ruleset, it is first important to create an implicit deny to all permissions of an
application. We can do this by simply running flatpak override <options> without specifying any
application. Here is an example of a resulting global override file (the file is listed above and named
'global'):

global

[Context]

devices=!all;!lkvm;!shm;dri
features=!bluetooth;!canbus;!devel;!multiarch;!per-app-dev-shm
filesystems=!host:reset

shared=!ipc

sockets=!cups;!fallback-x11;!gpg-agent;!pcsc;!pulseaudio;!session-bus;!ssh-auth;!system-bus;!x11;wayland

[Environment]
ELECTRON_OZONE_PLATFORM_HINT=auto
GTK_THEME=Adwaita:dark
QT_QPA_PLATFORM=wayland

[Session Bus Policy]
org.freedesktop.Flatpak=none
org.freedesktop.impl.portal.PermissionStore=none

org.freedesktop.secrets=none

[System Bus Policy]
org.freedesktop.UDisks2=none

org.freedesktop.UPower=none

Note that the ! means that the permission that follows is denied. filesystems=!host:reset means that
applications by default have no filesystem access, other than their own folder located in

.../flatpak/app .

The name of each file corresponds to the name of the program's app-id. The following example is
the result of running flatpak override --unshare=network --filesystem=~/KPass org.keepass.KeePassXC

tangy@clipper:~/ > cat /var/lib/flatpak/overrides/org.keepassxc.KeePassXC
[Context]
filesystems=~/KPass

shared=!network

This example allows for greater security as it denies KeePassXC, a password management, from
accessing the Internet, and allowing it access to only a single directory.

The PC-Mobile Security
Divide

Captain, I'm receiving a transmission from an unknown alien source.

Spock, can you decipher the message?

Yes captain, it's an executable file named 'word.exe'. | tried running it but application is not
starting.

Err, let me try running it as an administrator.

(The Enterprise's computer systems blue screen and power off due to a poor sense of operations
security)

In the realm of personal computing, there exists a strange divide. On one hand, you have the
mobile side, where permissions are explicitly granted to an application. Maybe that hilarious iBeer
app, which turns your phone into a simulated pint glass, doesn't need access to your contacts...
And, if any other app prompts you to access inappropriate permissions, you can simply deny it
access. On the other hand, PC apps kind of just do whatever they feel like doing. Everything from

your office programs to a funny purple monkey that dances around your desktop has essentially

unfettered access to your user space.

Current Solutions

Applications that Windows and macOS users interact with nowadays are signed with a developer's

private key when they are packaged, giving them the stamp of approval from Microsoft or Apple.
And Microsoft and Apple are trustworthy, right? So... what's the issue?

https://grok.zone/uploads/images/gallery/2024-11/OkoNRsjLTaQ1iTnN-image.png
https://en.wikipedia.org/wiki/BonziBuddy
https://learn.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
https://support.apple.com/guide/security/app-code-signing-process-sec7c917bf14/web
https://support.apple.com/guide/security/app-code-signing-process-sec7c917bf14/web

Do you want to allow this app from an
unknown publisher to make changes to your
device?

Drag the icon to your Application folder

A
lications

WindowsPasswordGeniusfor Applicati
Mac

SocNetV-2.7-a6aa1298-windows-
installer.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

.

iSunshare Windows Password Genius for Mac. Copyright(C) 2008-2017 iSunshare

L WindowsPasswordGeniusforhac

Well, as it turns out these two companies don't really review the contents of the executables you
decide to run. And for good reason- with the insane amount of applications being created, it's
impossible to review each one or probably even a majority of them. With that said, there are places
like the Microsoft Store and the App Store where applications are reviewed before being published.

However, even this is not foolproof plus you are always going to have some niche application that

requires you to manually run or install an application outside of your curated app store.

But what about my anti-virus?

Anti-viruses are basically big tables of program signatures that try to identify malicious files.
However, it isn't hard to make malicious applications that get missed by an antivirus, especially

with the use of polymorphic code which allows an executable to change its appearance to anti-
viruses.

So... what's the solution?

Well, to be clear the average user is probably smart enough to install applications from trustworthy
sources. Or, maybe it is more accurate to say search engines have become more cognizant as to
verifying the links to websites to download software. Maybe anti-viruses are actually getting better
at detecting malware. However, it still stands that sticking to this paradigm of installing software is
going to always be a cat and mouse game of the bad guys creating novel, malicious software and
the good guys detecting it.

On the contrary,allowing users to clearly grant permissions to applications has proven itself to be a
good solution in the mobile operating system space. This is not without its issues though; for
example, if permissions aren't granular enough, a developer might be forced to add an overly
broad permission. It also requires the OS to have a secure enough sandbox, lest the applications

https://grok.zone/uploads/images/gallery/2024-11/mSXwzYZuMaj9YfVW-image.png
https://grok.zone/uploads/images/gallery/2024-11/hefv3oJaIENr89Md-image.png
https://www.bleepingcomputer.com/news/security/malware-infiltrates-microsoft-store-via-clones-of-popular-games/
https://www.jamf.com/blog/jamf-threat-labs-apt-actors-embed-malware-within-macos-flutter-applications/
https://en.wikipedia.org/wiki/Polymorphic_code
https://grok.zone/uploads/images/gallery/2024-11/6y917c0QmPN5hPwn-image.png

would grant themselves permissions. However, with enough improvements such an access control
system can, and has proved in mobile operating systems, to be a great security layer.

As an aside, it would also be nice if the applications people commonly use were all open source and

auditable... including the operating system... but maybe I'm a little off my gourd.

What is your solution?

I'm a Linux user, and for the uninitiated Linux, or more accurately GNU/Linux, is essentially a very
customizable operating system due to its highly documented and open source nature. An
application for Linux called Flatpak allows for the sand-boxing of user applications, while utilizing
permission-based access similar to mobile applications. | have found it to be a wonderful way to
install and use applications in a secure manner.

I'll explain in detail how | use flatpaks in my system in an upcoming blog post. For now, take a look

at my dotfiles.

Happy computing!

https://github.com/Furthir/awesome-useful-projects
https://github.com/Furthir/awesome-useful-projects
https://en.wikipedia.org/wiki/Linux
http://github.com/gentmantan/dotfiles

Into the Nixverse

It seems like every time you think you know everything there is to know about Linux, there's
always something that catches you by surprise...

NixOS and the Nix package manager is software that allows you to configure a Linux system or
shell environment in a declarative and therefore reproducible manner. In other words, your system

can be completely immune from configuration drift. Nix also keeps track of a program's
dependencies without mutating the global state of packages, allowing for truly reproducible
software builds and system configurations. In addition, NixOS allows you to rollback to a previous
system state, just in case something goes horribly wrong after you update things. Combined with
version control using Git, NixOS lays the groundwork for a truly resilient system configuration for
everything from Infrastructure as Code deployments to personal workstations.

Here's an example NixOS system configuration file

configuration.nix

An example workstation configuration
{ config, lib, pkgs, ... }:

{

imports = [./hardware-configuration.nix ./additional-config.nix ;
boot.loader.systemd-boot.enable = true; # Enables the systemd bootloader

networking = { # Enables networking using network manager
hostName = "nixos";
networkmanager.enable = true;

}

https://grok.zone/uploads/images/gallery/2024-09/oavuM6fMX3RBG8B0-6z30p3c6ai7a1.jpg
https://nixos.org/
https://www.solarwinds.com/resources/it-glossary/configuration-drift

time.timeZone = "America/New_York";

users.users.sales = { # Creates a new user named sales
createHome = true;
extraGroups = ["networkmanager" I;

}

system.stateVersion = "24.11";

All it takes to rebuild this system is putting the above Nix code into /etc/nixos/configuration.nix and
executing nixos-rebuild switch . Yup, that's it! No need to mess around with apt, dnf or touch any
config files. The Nix package manager will evaluate your configuration.nix file using the attributes
(variables) you defined, compare it with the Nixpkgs repository to generate a build plan, and finally
pulling pre-built binary packages from cache.nixos.org. If you break your system config, no worries
just select your previous system configuration from the boot menu:

lex Kerml 5 :Iﬂ 1B-xanlnd

Reboot Iwnto Firmware Interface

All of NixOS' available options and packages can be found in https://search.nixos.org, and you can

even follow along and see what each option does in the nixpkgs GitHub repository. | have also

uploaded my own workstation's super fancy configuration onto Github which you can find here.

Well actually...

While using nixos-rebuild to build a system configuration can help ensure consistency, it does not
guarantee consistency of a system's state across machines, as the build process is influenced by
the state of the Nix package repository itself when the command was executed.

https://grok.zone/uploads/images/gallery/2025-01/V12nNAq9iyYAQxJ8-image.png
https://search.nixos.org
https://github.com/NixOS/nixpkgs/blob/nixos-24.05/nixos/modules/virtualisation/podman/default.nix
https://github.com/gentmantan/dotfiles

For example, if system A builds Firefox -> changes are committed tofirefox in the Nixpkgs

repository -> system B builds Firefox, the two systems are looking at two different versions
of the Nixpkgs repository and will end up installing two different versions of Firefox.

Developer A Developer B Nixos-Build Nixpkgs Repo

Run nixos-build

Run nixos-build

Evaluate nix expressions for configuration A

Return dependencies and configurations

Changes are made to Nixpkgs

Evaluate nix expressions for configuration B

Return dependencies and configurations

Build configuration A

Build configuration B

Configuration A is built

Configuration B is built
Developer A Developer B Nixos-Build Nixpkas Repo

This problem is solved by using Nix flakes, which allows you to write Nix code whose dependencies
are version-pinned in a flake.lock file. Flakes also allow you to define a variety of options such as
the previously mentioned NixOS configuration, a development shell for a reproducible development
environment, build checks, etc. (see the flake schema for options). As this is a big topic, | will have
to write a separate post regarding Nix flakes another time.

So, in summary,

During my time learning and using NixOS I've honestly been having a blast. It has been a
refreshing experience to work with a Linux distribution that provides for reproducibility, declarative
configuration, and a strong focus on functional programming principles. | highly recommend
Docker/Podman enthusiasts, DevOps engineers and experienced Linux users to give NixOS a whirl.
Like a new codebase, NixOS will take some time to get used to, but your future self that's breaking
or upgrading your system will thank you.

https://grok.zone/uploads/images/gallery/2025-01/1s0sswLVhODaDPkv-image.png
https://nixos.wiki/wiki/flakes
https://nixos.wiki/wiki/flakes#Flake_schema
https://github.com/NixOS/nixpkgs/tree/nixos-unstable/pkgs/applications/networking/browsers/firefox
https://github.com/NixOS/nixpkgs/tree/nixos-unstable/pkgs/applications/networking/browsers/firefox

Hi there, I'm Gentman Tan!

Mana-_ ‘ent

I'm always tinkering with Linux distributions, making things hands on and learning new ideas and

methodologies. I'm always eager to learn and collaborate with like-minded individuals who share
my passion for technology and innovation.

Contact

Feel free to reach out to me!

Email | LinkedIn | SimpleX

My Resume

https://grok.zone/uploads/images/gallery/2024-09/xDDP0jbFKqDIE8co-1000019295.jpg
https://grok.zone/uploads/images/gallery/2024-12/4VtcXjli8m94XymL-img-6065.jpg
https://grok.zone/shelves/linux
https://grok.zone/shelves/makerdiy
https://grok.zone/shelves/makerdiy
https://grok.zone/shelves/grokking
https://grok.zone/shelves/grokking
mailto:gentmantan@gmail.com
https://linkedin.com/in/gentmantan
https://simplex.chat/contact#/?v=2-4&smp=smp%3A%2F%2FUkMFNAXLXeAAe0beCa4w6X_zp18PwxSaSjY17BKUGXQ%3D%40smp12.simplex.im%2Fo_t-vL8gFTmQ3Q-G0sjP88p-01KMqydD%23%2F%3Fv%3D1-2%26dh%3DMCowBQYDK2VuAyEAeq6d74iAW_vZ0eYcM-Lx_FosAusi3JEML3SPgwOkri4%253D%26srv%3Die42b5weq7zdkghocs3mgxdjeuycheeqqmksntj57rmejagmg4eor5yd.onion
https://grok.zone/uploads/images/gallery/2024-09/F07PAbENQNTfy4XH-1000019246.jpg
https://grok.zone/attachments/3

Hi there, welcome to
grok.zone!

This is a personal wiki | use to write interesting things down. It's organized into shelves and books
like a physical library.

Browsing the Zone

[[1 Read the blog

[1] Recently Updated

[T] Browse by topic

About Me

Hi I'm Gentman Tan, essentially I'm a technophile.

Profile Page

https://grok.zone/books/blog
https://grok.zone/pages/recently-updated
https://grok.zone/books
https://gentmantan.com

