
I run a tight ship. The only rats on board are the ones I keep as pets!

In today's digital landscape, the PC has become the tool of choice for modern productivity.
However, with the increasing reliance on these systems comes a growing concern for security. As
workstations often handle sensitive information and access critical networks, they have at times
become a prime target for cyber threats and malicious attacks. In a previous blog post, I explain
the shortcomings PC operating systems have in terms of application security. So the question must
be asked, what tools are available to address these shortcomings? Can concepts that have proven
to work for computer network security such as zero trust architecture be applied to a desktop
environment?

Flatpaks provide standardized environments for applications to be packaged in and run on different
systems. This is necessary since while Linux systems share the same kernel API, Linux systems are
configured in a vast variety of ways, utilizing different display managers and software libraries.
Once you install flatpak on your system, you can issue a flatpak install command to then install an
application of your choice.

In addition to this, Flatpak uses the bubblewrap program which allows applications to be
sandboxed from the host system, while explicitly allowing access parts of the system. Specifying
the certain kinds of interfaces an application is allowed to interact with is one of the key principles
behind security of mobile applications, and is what Flatpaks provide.

Flatpaks: Having your cake
and eating it too!

Flatpaks!

https://grok.zone/books/blog/page/the-pc-mobile-security-divide
https://en.wikipedia.org/wiki/Zero_trust_architecture
https://grok.zone/uploads/images/gallery/2025-01/y9YSa1vG8eo0XK3z-image.png
https://flatpak.org/
https://flatpak.org/setup/
https://flathub.org/

Flathub, the default public repository for flatpaks, gives a
brief overview of permissions granted to a flatpak.

In theory, this sandboxing feature allows an application to be executed safely and without fearing
unauthorized access. In practice, many applications are configured with overly lax permissions, and
as a result become ineffective at isolating an application. Flatpak itself has some issues with
permissions not being granular enough, such as when an application requires access to a single
USB device in /dev , as opposed to the entirety of /dev which is being fixed as of the time of writing
. In a related fashion, Android had permissions issues where it required location access in order to
access Bluetooth devices until Android 12 (API level 31).

Luckily, Flatpak overrides allows a user to grant or prevent access to resources to applications. This
means that in order to solve the issue of overly permissive application access, we can simply
override the permissions that were granted to the application with those of our own. To do so, we
can use the flatpak override command, which adds text file entries to the overrides directory
(located in /var/lib/flatpak/overrides/global for system-wide flatpaks, or ~/.local/share/flatpak/overrides for
user flatpaks).

Fine, I'll do it myself

Flatpak overrides in-depth

https://grok.zone/uploads/images/gallery/2025-01/LnZwabcnqe78yDID-image.png
https://flathub.org/
https://github.com/flatpak/flatpak/pull/5855
https://grok.zone/uploads/images/gallery/2025-01/VFxlcfdH7kDNLzcK-image.png
https://docs.flatpak.org/en/latest/flatpak-command-reference.html#flatpak-override

Just like a firewall's ruleset, it is first important to create an implicit deny to all permissions of an
application. We can do this by simply running flatpak override <options> without specifying any
application. Here is an example of a resulting global override file (the file is listed above and named
'global'):

tangy@clipper:~/ > ls /var/lib/flatpak/overrides
chat.simplex.simplex org.audacityteam.Audacity
com.github.iwalton3.jellyfin-media-player org.freecad.FreeCAD
com.github.johnfactotum.Foliate org.getmonero.Monero
com.github.xournalpp.xournalpp org.gimp.GIMP
com.google.AndroidStudio org.gnome.Boxes
com.prusa3d.PrusaSlicer org.keepassxc.KeepassXC
com.valvesoftware.Steam org.keepassxc.KeePassXC
dev.vencord.Vencord org.mozilla.firefox
dev.vencord.Vesktop org.mozilla.Thunderbird
global org.torproject.torbrowser-launcher
io.freetubeapp.FreeTube us.zoom.Zoom
io.gitlab.librewolf-community

global
[Context]
devices=!all;!kvm;!shm;dri
features=!bluetooth;!canbus;!devel;!multiarch;!per-app-dev-shm
filesystems=!host:reset
shared=!ipc
sockets=!cups;!fallback-x11;!gpg-agent;!pcsc;!pulseaudio;!session-bus;!ssh-auth;!system-bus;!x11;wayland

[Environment]
ELECTRON_OZONE_PLATFORM_HINT=auto
GTK_THEME=Adwaita:dark
QT_QPA_PLATFORM=wayland

[Session Bus Policy]
org.freedesktop.Flatpak=none
org.freedesktop.impl.portal.PermissionStore=none
org.freedesktop.secrets=none

[System Bus Policy]
org.freedesktop.UDisks2=none
org.freedesktop.UPower=none

Note that the ! means that the permission that follows is denied. filesystems=!host:reset means that
applications by default have no filesystem access, other than their own folder located in
.../flatpak/app .

The name of each file corresponds to the name of the program's app-id. The following example is
the result of running flatpak override --unshare=network --filesystem=~/KPass org.keepass.KeePassXC

This example allows for greater security as it denies KeePassXC, a password management, from
accessing the Internet, and allowing it access to only a single directory.

tangy@clipper:~/ > cat /var/lib/flatpak/overrides/org.keepassxc.KeePassXC
[Context]
filesystems=~/KPass
shared=!network

Revision #6
Created 20 November 2024 15:16:11 by GT
Updated 14 January 2025 16:19:20 by GT

