
It seems like every time you think you know everything there is to know about Linux, there's
always something that catches you by surprise...

NixOS and the Nix package manager is software that allows you to configure a Linux system or
shell environment in a declarative and therefore reproducible manner. In other words, your system
can be completely immune from configuration drift. Nix also keeps track of a program's
dependencies without mutating the global state of packages, allowing for truly reproducible
software builds and system configurations. In addition, NixOS allows you to rollback to a previous
system state, just in case something goes horribly wrong after you update things. Combined with
version control using Git, NixOS lays the groundwork for a truly resilient system configuration for
everything from Infrastructure as Code deployments to personal workstations.

Into the Nixverse

Here's an example NixOS system configuration file

configuration.nix
An example workstation configuration
{ config, lib, pkgs, ... }:
{
 imports = [./hardware-configuration.nix ./additional-config.nix];

 boot.loader.systemd-boot.enable = true; # Enables the systemd bootloader

 networking = { # Enables networking using network manager
 hostName = "nixos";
 networkmanager.enable = true;
 };

https://grok.zone/uploads/images/gallery/2024-09/oavuM6fMX3RBG8B0-6z30p3c6ai7a1.jpg
https://nixos.org/
https://www.solarwinds.com/resources/it-glossary/configuration-drift

All it takes to rebuild this system is putting the above Nix code into /etc/nixos/configuration.nix and
executing nixos-rebuild switch . Yup, that's it! No need to mess around with apt , dnf or touch any
config files. The Nix package manager will evaluate your configuration.nix file using the attributes
(variables) you defined, compare it with the Nixpkgs repository to generate a build plan, and finally
pulling pre-built binary packages from cache.nixos.org. If you break your system config, no worries
just select your previous system configuration from the boot menu:

All of NixOS' available options and packages can be found in https://search.nixos.org, and you can
even follow along and see what each option does in the nixpkgs GitHub repository. I have also
uploaded my own workstation's super fancy configuration onto Github which you can find here.

While using nixos-rebuild to build a system configuration can help ensure consistency, it does not
guarantee consistency of a system's state across machines, as the build process is influenced by
the state of the Nix package repository itself when the command was executed.

 time.timeZone = "America/New_York";

 users.users.sales = { # Creates a new user named sales
 createHome = true;
 extraGroups = ["networkmanager"];
 };

 system.stateVersion = "24.11";
}

Well actually...

https://grok.zone/uploads/images/gallery/2025-01/V12nNAq9iyYAQxJ8-image.png
https://search.nixos.org
https://github.com/NixOS/nixpkgs/blob/nixos-24.05/nixos/modules/virtualisation/podman/default.nix
https://github.com/gentmantan/dotfiles

This problem is solved by using Nix flakes, which allows you to write Nix code whose dependencies
are version-pinned in a flake.lock file. Flakes also allow you to define a variety of options such as
the previously mentioned NixOS configuration, a development shell for a reproducible development
environment, build checks, etc. (see the flake schema for options). As this is a big topic, I will have
to write a separate post regarding Nix flakes another time.

During my time learning and using NixOS I've honestly been having a blast. It has been a
refreshing experience to work with a Linux distribution that provides for reproducibility, declarative
configuration, and a strong focus on functional programming principles. I highly recommend
Docker/Podman enthusiasts, DevOps engineers and experienced Linux users to give NixOS a whirl.
Like a new codebase, NixOS will take some time to get used to, but your future self that's breaking
or upgrading your system will thank you.

For example, if system A builds Firefox -> changes are committed tofirefox in the Nixpkgs
repository -> system B builds Firefox, the two systems are looking at two different versions
of the Nixpkgs repository and will end up installing two different versions of Firefox.

So, in summary,

Revision #9
Created 7 September 2024 00:31:26 by GT
Updated 14 January 2025 18:01:49 by GT

https://grok.zone/uploads/images/gallery/2025-01/1s0sswLVhODaDPkv-image.png
https://nixos.wiki/wiki/flakes
https://nixos.wiki/wiki/flakes#Flake_schema
https://github.com/NixOS/nixpkgs/tree/nixos-unstable/pkgs/applications/networking/browsers/firefox
https://github.com/NixOS/nixpkgs/tree/nixos-unstable/pkgs/applications/networking/browsers/firefox

